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While we can affirm that the representation, storage and exchange of two-dimensional
objects (vector data) in GIS is solved (at least if we consider the de facto standards
shapefile and GML), the same cannot be said for fields. Among the GIS community,
most people assume that fields are synonymous with raster structures, and thus only
representations for these are being used in practice (many formats exist) and have been
standardised.

In this report, I present a new GML-based representation for fields in 2D and 3D,
one that permits us to represent not only rasters, but also fields in any other forms.
This is achieved by storing the original samples of the field, alongside the interpolation
method used to reconstruct the field. The solution, called FieldGML, is based on current
standards, is flexible, extensible and is also more appropriate than raster structures to
model the kind of datasets found in GIS-related applications.

For more information about FieldGML:

http://www.gdmc.nl/ledoux/fieldgml.html

Note: This document is the final report for the WP4.1.1 “Towards standardised dy-
namic and 3D field representations” of the Ruimte voor Geo-Informatie RGI-116 project,
entitled “Internationale geostandaarden”. The projects aimed at making recommenda-
tions for the standardisation of dynamic and 3D fields. Many standards exist for static
objects and fields (e.g. ISO 19107:2003 Spatial schema; ISO 19141 Schema for moving
features; ISO 19123 Schema for coverage geometry and functions) but there seems to be
a gap in the standards for fields in more than two dimensions and/or when the temporal
factor is taken into consideration. The project is driven by the increasing use and collec-
tion of such datasets in many disciplines related to the Earth, most notably among the
oceanographic and atmospheric communities. This project was two-fold, in the sense
that it had to cover:

1. the abstract specifications of fields (in 2D and 3D). That means clearly defining
what fields are, how they can be represented in a computer, and also how the
temporal dimension influences the representations.

2. the implementation specifications, i.e. what formats and structures should be used
to store fields.
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1 Introduction

There exist two documents related to the standardisation of fields: ‘Schema for coverage
geometry and functions’ (ISO 19123) (ISO, 2005b), and the OGC document with the
same title (OGC, 2007b). As highlighted in this report, these contain several shortcom-
ings, weaknesses and omissions for the representation of fields, and should be updated.
These shortcomings probably come from the fact that the definition of a field itself
changes from discipline to discipline, and that the issues can be seen from a philo-
sophic, conceptual or implementation point of view (Peuquet et al., 1999). There is
also much confusion among users between spatial models, data structures, and spatial
concepts (Frank, 1992). While in the GIS jargon object- and field-views of space are
often synonymous with respectively vector and raster models, Goodchild (1992), among
others, explains that this is simply false as both views can be stored with either model.
Put on top of that that fields are by definition something continuous—and that com-
puters are discrete machines—and one can start understanding the confusion among
users. These difficulties, coupled with the shortcomings of current standards, result in
a situation where the standards are barely used in practice, except for raster format.

This report presents a new alternative for representing fields called FieldGML. This is
a generic solution based on current standards (i.e. GML), and permits us to efficiently
store and exchange field-based geographic information, and not only rasters. The main
idea behind this representation is that instead of storing explicitly grids or tessellations,
we store the data that were collected to study the field (the samples), and we also store
the interpolation method that will permit us to reconstruct the field in a computer. I
also argue in the following that FieldGML offers a better representation than current
ones because: (i) it takes into account the nature of datasets as found in GIS-related
applications; (ii) it is valid for fields in 2D and 3D, but can be readily extended to
higher-dimensions; and (iii) it is flexible in the sense that different types of fields can be
stored (scattered points, tessellations, tetrahedralizations, voxels, etc.).

The report starts in Chapter 2 with definitions related to fields, then Chapters 3 and
4 give an overview and a critique of the current standards and formats used in practice,
and the details of FieldGML are presented in Chapters 6 and 7.

It should be noticed that the topic was investigated from a scientific (GIS and Earth
sciences) point of view, and not from the point of view of practitioners working in the
industry (low-level details are therefore not discussed as the problem is approached from
a conceptual point of view).
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2 Fields and their Representation

Space can be conceptualised according to two different approaches: the object and the
field views (Couclelis, 1992; Goodchild, 1992; Peuquet, 1984). In a nutshell, the former
view considers space as being ‘empty’ and populated with discrete entities embedded in
space. The entities can be for example roads, cups of tea, churches, etc., and they have
certain properties. The latter model considers the space as being continuous, and every
location in space has a certain property (there is something at every location). Entities
or things are formed by clusters of properties. This dichotomy is also present at the
implementation level for GIS applications: the raster versus vector structures.

2.1 Definition of a Field

A field is a concept rather difficult to define because it is not tangible and not part of
our intuitive knowledge. It is easy for us to see and describe entities such as houses
or chairs, but, although we can imagine fields, they are somewhat an abstract concept.
The consequences of that are firstly that formalising a field is difficult, and secondly
that many definitions exist in different disciplines (Peuquet et al., 1999). The definition
usually used in a GIScience context is borrowed and adapted from physics. Physicists
in the 19th century developed the concept of a force field to model the magnetic or the
gravitational force, where a force (a vector with an orientation and a length) has a value
everywhere in space, and changes from location to location. For most GIS applications,
the vector assigned to each point of the Euclidean space is replaced by a scalar value,
and we obtain scalar fields (it is assumed in the following that all fields are of that type).

Because each location in space possesses a value, a field must be represented math-
ematically. It is a model of the spatial variation of a given attribute a over a spatial
domain, and it is modelled by a function, from Rd to R in a d-dimensional Euclidean
space, mapping the location to the value of a, thus

a = f(location).

The function can theoretically have any number of independent variables (i.e. the spatial
domain can have any dimensions), but in the context of geographical phenomena the
function is usually bivariate (x, y) or trivariate (x, y, z). Notice that the domain can also
incorporate time as an extra dimension, and thus we have a = f(location, time).

2.2 Properties

Scale of Measurement. The value of the attribute a of a field can be measured ac-
cording to different scales, and depending on the scale used different types of fields will

6

Preliminary version—December 15, 2008



be obtained. It is important to discuss the different scales because the mathematical
operations possible on fields will be different when different scales are used. For geo-
graphical data, the scale of measurement usually used is the one of Stevens (1946), who
defines four scales:

Interval: the values of an attribute can be any real number R, but the zero point on
the scale is arbitrarily defined. Operations such as addition and subtraction are
meaningful, but division is not. The Celsius and Fahrenheit scales are two obvious
examples: 30� is 20� warmer than 10�, but it is not three times warmer. Only
the magnitude of the difference between two values is meaningful.

Ratio: the values of an attribute have all the features of interval measurement, but here
the ratio between two values is meaningful. In other words, a ratio scale has a
fixed zero point. Obvious examples are when temperatures are measured in Kelvin
(instead of Celsius), or the amount of snow that has fallen in a certain region.

Nominal: the values of an attribute are simply labels, and they are meaningless. An
example is a map of Europe where each location contains the name of the country.
The only comparison that can be made between two values is if they are the same
or not.

Ordinal: the values are also labels, but they can be ordered, e.g. a certain region can be
categorised according to its suitability to agriculture from 1 to 5: 1 being poor,
and 5 very good. Here comparisons such as ‘greater than’ and ‘less than’ can be
made, but no arithmetic operations are possible.

The first two scales are considered as being continuous, and most fields studied in the
geosciences fall into this category. Temperature, precipitation or salinity are examples
because they can be measured precisely. I refer to this type of field as a continuous field.
The last two scales are less common, but are useful in some applications (mostly social
sciences). I refer to this kind of field as a discrete field.

Continuity. The use of the terms ‘continuous’ and ‘discrete’ can be misleading because
in mathematics continuity has a slightly different meaning. The terms refer here to the
scale of measurement, and not to the spatial continuity of a field. Indeed, both types of
fields are spatially continuous, as they are represented by a function and there exists a
value at every location in space.

2.3 Representation in Computers

The representation of a field in a computer faces many problems. Firstly, fields are
continuous functions, and, by contrast, computers are discrete machines. Secondly, it
should be stressed out that we never have access to a ‘complete representation’ of a
geographical phenomenon. Indeed, to obtain information about a given phenomenon,
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one must sample it, and reconstruct the field from these samples1. In the context
of GIS-related applications (e.g. modelling of elevation, geosciences, geology, hydrology,
bathymetry, etc.), this collection of samples is hindered by the fact that unlike disciplines
like medicine or engineering, we seldom have direct access to the whole object (think
of collecting data underground, or at sea for instance). And even if we have complete
access to the object, it is often too expensive to sample the object everywhere.

In short, to represent a field in a computer (i.e. to be able to model a continuous
phenomenon), we need to:

1. have a set of samples for the given fields—they are the “ground truth” of a field.
The samples are usually point-based, but other forms can also exist (for instance
an image obtained with remote sensing).

2. define a set of rules to obtain the values of the attribute studied, at any location.
This operation is referred to as spatial interpolation.

2.4 Confusion between Objects and Fields

As highlighted by the ISO/OGC documents, there exists confusion between fields, ob-
jects, and their representations in computers. The confusion with these issues probably
come from the fact that the definition of field itself changes from disciplines to disci-
plines, and that the issues can be seen from a philosophic, conceptual or implementation
point-of-view (Peuquet et al., 1999).

Even in the GIS-related scientific literature there are many misunderstandings between
spatial models, data structures, and spatial concepts. The confusion originates from
the fact that object and field views of space are usually implemented in a GIS with
respectively vector and raster models (Frank, 1992; Goodchild, 1992). A vector model
represents individually each object with primitives such as points, lines and polygons
(and polyhedra in 3D), and have hence been linked to the object view. On the other hand,
raster representations are more or less synonymous with fields in the GIS community.
However, as Goodchild (1992) points out, fields can also be represented by vector models
(e.g. if a triangulation is used), and that is probably the main source of confusion:
the same spatial model can be implemented with different data structures. According
to Frank (1992), a spatial model offers an abstract view of a data structure, which
is defined as “the specific implementation of a geometric data model, which fixes the
storage structure, utilization, and performance”.

An other example of confusion is with full partitions, for example with cadastral
maps (Galton, 2001; Peuquet et al., 1999). In that case, we have objects (each parcel),
and to each object is assigned one value (e.g. the owner); a field is thus present as there is
a single value for the “owner” attribute at every location. The same be said of choropleth
maps, which are discrete fields and used mostly in social sciences for the visualisation of

1Even if a sensor is used to collect samples, the result (e.g. an image with pixels) is not a complete
representation since each pixel usually averages the value of the studied phenomenon over the pixel
area, or each pixel represents the value located in the middle of the pixel.
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Figure 2.1: An example of a choropleth map (figure from Statistics Canada).

statistical variables such as densities, rates or proportions. Figure 2.1 shows one example
where the median age of the population for different districts of Québec City is shown.
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3 Current Standards for Fields

There are two “levels” of geographic information standards: abstract and implementa-
tion specifications. The former defines a conceptual architecture (or reference model)
for different aspects related to the storage and exchange of information; and the latter
are at a lower-level, i.e. they define an interface to access the properties and methods of
classes defined in the abstract specifications.

3.1 Abstract specifications

In the case of fields, two documents exist: the ‘Schema for coverage geometry and
functions’ (ISO, 2005b), and the OGC document with the same title (OGC, 2007b).
Notice here that fields are referred to as “coverages” in these documents; both terms are
synonymous and used interchangeably in the following. Both documents have the same
content.

3.1.1 Definition of Coverage

A coverage is considered a feature1, like is any geographic object in the ISO/OGC
documents. So while each geographic object in a representation of a field is a feature,
the field as a whole is a feature too.

The formal definition of “coverage” is the following (and its principal classes are shown
in Figure 3.1):

A coverage is a feature that acts as a function to return values from its range
for any direct position within its spatial, temporal or spatiotemporal domain.
[...] [it] has multiple values for each attribute type, where each direct position
within the geometric representation of the feature has a single value for each
attribute type.

Notice that a ISO/OGC coverage can have many different attribute types, but that this
is not relevant here, and we simply assume that one coverage is for one attribute type
(let that be the temperature of the air, the elevation of a terrain, the density of the
population, etc.)

3.1.2 Two Different Types of Coverages

The coverage type is divided into two distinct but closely related subtypes:
1A feature is an abstraction of a real world phenomenon; it is a geographic feature if it is associated

with a location relative to the Earth (ISO, 2003).
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<<Type>>

CV_Coverage

+domainExtent [1..*]: EX_Extent

+rangeType: RecordType

+list(): Set<CV_GeometryValuePair>

+evaluate(p:DirectPosition): Record

<<MetaClass>>

GF_FeatureType

<<Type>>

CV_DiscreteCoverage

+locate(p:DirectPosition): Set<CV_GeometryValuePair>

<<Type>>

CV_ContinuousCoverage

+interpolationType: CV_InterpolationMethod

+interpolationParameterTypes[0..1]: Record

+locate(p:DirectPosition): CV_InterpolationMethod

CV_GeometryValuePair

+geometry: CV_DomainObject

+value: Record

<<Type>>

CV_ValueObject

+geometry: CV_DomainObject

+interpolationParameter[0..1]: Record

+interpolate(p:DirectPosition): Set<CV_ValueObject>

1..*
+0..*

<<instantiates>>

1..*

0..*

0..*

1..*

Figure 3.1: UML diagram for the main classes of an ISO/OGC coverage. (Figure after
ISO (2005b))

Continuous Coverage: coverage that returns different values for the same feature at-
tribute at different direct positions within a single spatial object, temporal object
or spatiotemporal object in its domain.

Discrete Coverage: coverage that returns the same feature attribute values for every
direct position within any single spatial object, temporal or spatiotemporal object
in its domain.

The definition of a continuous coverage is more or less equivalent to that of the general
coverage type. The definition refers to the fact that interpolation is used to obtain
the attribute value at a given location x. The terms “within a single object” can be
misleading, but means that interpolation is always performed with a function defined
over one geometric object (e.g. a polygon in 2D); if no object is present at a location x
(possible according to the definition of a coverage) then no value at x is returned.

The latter type, the discrete coverage, seems to exist only because “a coverage can be
derived from a collection of discrete features with common attributes” (ISO, 2005b). As
explained in Section 2.3, this is true (the samples), provided that we have a set of rules
to reconstruct the coverage at every location, but this is not the case in the ISO/OGC
documents. It is also stated that “a discrete coverage has a domain that consists of a
finite collection of geometric objects and the direct positions contained in those geometric
objects”. The problem here is that these geometric objects do not have to fully partition
the domain, i.e. according to that definition a set of unconnected lines and/or polygons
(in which each object has a value attached to it) is considered a coverage. Even worse,
the objects are permitted to overlap, which means not only do we have locations without
any answer, but that there can be more than one answer at one given location! This
might be useful for some applications—I am however not aware of any—but none are
mentioned in the documents.
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Summary. There is, in short, almost no differences between a discrete coverage and a
normal vector map. That implies that a dataset composed of roads (polyline features
only) to which an attribute is attached (name of the road, maximum speed, number of
accident, etc.) can thus be classified as coverage (a CV SegmentedCurveCoverage) or
as a network of roads. Also, a continuous coverage is a discrete coverage to which an
interpolation function is assigned. A set of scattered point by itself is thus a discrete
coverage, but if an interpolation function is assigned to that set then it becomes a
continuous coverage. A 2D grid by itself, where each pixel has a single value, is a discrete
coverage (even though at every location x one can obtain a value for the attribute), and
it becomes a continuous coverage if interpolation within each pixel is used (e.g. bilinear
interpolation).

3.1.3 Special Coverage Subtypes

Different subtypes, which are conceptually the same as other types of coverages, are also
defined and described in the ISO/OGC documents: for example CV TINCoverage and
CV ThiessenPolygonCoverage, which are both similar since they are actually irregular
partitions. Moreover, the oddity here is that these two are subtypes of CV Continuous-
Coverage and not CV DiscreteCoverage. This is because one and only one interpolation
function is assumed possible for each coverage (linear interpolation in TIN, and natural
neighbour interpolation for the Voronoi diagram).

3.1.4 Interpolation Functions

The list of interpolation methods discussed in the ISO/OGC documents is very re-
stricted. Many interpolation methods are simply ignored, and if one wanted to use them
it would be very difficult to integrate them in the coverage framework. The OGC has
another document discussing interpolation functions that lists more interpolation func-
tions (OGC, 1999), but there are no formal description of these or of how they could be
incorporated in the abstract specifications.

Examples of major omissions: IDW and Kriging are not listed, and as stated before,
the CV TINCoverage assumes for example that only one type of interpolation is possible
within each triangle (which is restrictive in practice).

3.1.5 Discrete Coverages with Lines and/or Polygons & Interpolation

Usually point samples are assumed to form the basis on which fields will be reconstructed.
However, the ISO/OGC also allows lines, and disconnected and/or overlapping polygons.

A set of lines, for example contour lines to model the elevation, is considered a discrete
field. There is however no mention of methods to reconstruct the terrain directly from the
lines (and derive a coverage). The reconstruction is usually done by discretising first the
lines to points, although some theoretical work has been done for interpolation directly
with points and lines (Anton et al., 2004). The only kind of interpolation mentioned for
line segments is linear within each segment.
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Functions to obtain continuous coverages from a set of polygons are not mentioned
either, and I am not aware of any methods published that take disconnected polygons
as input.

3.1.6 Three-dimensional Case

The ISO/OGC documents state at different places that the abstract specifications are
valid not only for the 2D case, but also for three and higher dimensions. The prob-
lem is that it is only stated at a few places, and that the only 3D type defined is
CV DiscreteSolidCoverage, which is basically any datasets containing polyhedra in 3D
space (these polyhedra are potentially overlapping each other and/or disconnected).

3.2 Implementation Specifications

To my knowledge, the only implementation of the ISO/OGC abstract specifications is
that of GML. It is an XML-based modelling language developed to facilitate the exchange
of geographic data, and has been fairly successful in recent years. While a GML file is
verbose (and thus files can become enormous), there are many advantages to using it.
Lake (2000) mentions, among others: (i) it is self-descriptive, (ii) it can be processed
with already existing XML software, (iii) there are mechanisms to store metadata, and
(iv) data integrity can be verified with the help of schemas. The reader is referred to Lu
et al. (2007) and OGC (2007a) to learn more.

As of GML version 3.2, only the CV DiscreteCoverage types have been implemented:
there are GML schemas for all subtypes of CV DiscreteCoverage, and also for grids
(CV Grid). That results in a representation that does not necessarily cover the whole
spatial domain, and no mechanisms are present to estimate the value of an attribute
where there are no spatial objects, or a default and simplistic method is assumed. Using
simplistic interpolation methods, or the wrong parameters for a method, is dangerous
as many researchers have highlighted (see Watson (1992) for instance).

Not all abstract classes were implemented in GML, CV GeometryValuePair is for
instance not present, and was replaced by an implementation that follows closely the
conceptual distinction between the spatial domain and the range (the attribute mod-
elled). The resulting XML file has to have three separate types: the domain, the range
and another one for mapping these two correctly. As Cox (2007) explains, although this
is conceptually valid, it also hinders the use of these standards in practice because of
the difficulties of processing large files, of updating files, etc.
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4 Summary of Formats/Models Being Used
in Practice

Among GIS practitioners, fields are being used almost exclusively in 2D, while in the
geoscience community 3D and higher-dimensional fields are extensively used. Note that
the dimensions in oceanographic/atmospheric coverages are not necessarily spatial di-
mensions, as any parameters (e.g. temperature of the air, or density of water) can be
considered a dimension.

As mentioned before, within the GIS community, coverages are more or less synony-
mous with grids, although it must be said that TINs are also widely used for modelling
terrain elevation. There exist many different formats for 2D grids, but they can be easily
all converted to one another.

In geoscience, netCDF1 seems to be the de facto standard to exchange datasets, al-
though other similar formats, such as HDF52, are also popular. These formats are
raster-based, and permit users to use n-dimensional grids, with different spacing for dif-
ferent dimensions. They are binary and spatially structured, which means that parts of
a dataset can be efficiently retrieved and processed. Although it is technically possible
to store scattered points with a netCDF file (with many workarounds), the result is
non-efficient and all the advantages of the format (directly access, slicing, etc.) are lost.

The use of other representations in 3D (e.g. tetrahedralizations or arbitrary polyhedra)
is very rare and mostly limited to the academic community.

It should be noticed here that the wide popularity of raster representations in GIS
applications is probably due to the fact that they permit us to integrate remote sensing
images and fields, and also due to simplicity. Indeed, a grid is naturally stored in a
computer as an array (each grid cell is addressed by its position in the array, and only
the value of the grid cell is stored), and thus the spatial relationships between cells
are implicit. The algorithms to analyse and manipulate (boolean operations such as
intersection or containment) are also trivially implemented in a computer.

4.1 The Dangers of Using Raster Formats

As argued by many over the years, using raster structures has many drawbacks (Gold
and Edwards, 1992; Kemp, 1993; Haklay, 2004; Ledoux and Gold, 2006). Firstly, as
Fisher (1997) points out, the use of pixels as the main element for storing and analysing
geographical data is not optimal. The problems most often cited are: (i) the meaning

1http://www.unidata.ucar.edu/software/netcdf/
2http://www.hdfgroup.com
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of a grid is unclear (are the values at the centre of each pixel, or at the intersections of
grid lines?), (ii) the size of a grid (for fine resolutions, grids can become huge), (iii) the
fact that the space is arbitrarily tessellated without taking into consideration the objects
embedded in that space. Secondly, the use of grids in GIS/geoscience applications has
wider repercussions since we can assume in most cases that a given grid was constructed
from a set of point samples. Converting samples to grids is dangerous because the original
samples, which could be meaningful points such as the summits, valleys or ridges or a
terrain, are not present in the resulting grid. The importance of the original samples for
a field is such that they have even been dubbed the meta-field by Kemp and Včkovski
(1998). It should also be said that when a user only has access to a grid, he often
does not know how it was constructed and what interpolation method was used, unless
metadata are available. Notice that all the previous statements are also valid in 3D (a
pixel becomes a voxel).
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5 Other Efforts to Represent Fields

From a “standards” point of view, different XML-based languages (eXtensible Markup
Language) have been proposed. First of all, there is the more general-purpose GML
that implements many of the ISO/OGC standards for fields, but not all of them. Note
that the definitions of these standards can be found in Section 3, and their implemen-
tation with GML is discussed in Section 6. Based on GML/XML, there are different
languages to model fields. For instance, Nativi et al. (2005) propose the NcML-GML,
which permits us to store with GML the metadata associated with netCDF files (this
is a multi-dimensional raster format described in the next section). Also, Woolf and
Lowe (2007) propose the Climate Science Modelling Language (CSML), which is used
to represent all the different kinds of climate data (often fields) and their relevant infor-
mation. The particularity of CSML is that, for the sake of simplicity and performance,
the authors chose to use only parts of the standards: they offer a GML-based ‘wrap-
per’ around legacy formats to simplify exchange, but they are still using the legacy file
for applications (these legacy files are all raster-based). Furthermore, the Geoscience
Markup Language (GeoSciML) can be used to store any kind of information related to
geology (Sen and Duffy, 2005). When fields are involved, they are usually stored in raster
formats, but GeoSciML also allows the storage of the observations that were collected
(interpolation methods are however not discussed).

From a GIScience point of view, different alternatives to the ubiquitous rasters have
been proposed over the years, starting with tessellations into triangles (Mark, 1975;
Peucker, 1978). Kemp (1993) proposes different alternatives to store 2D fields, and shows
how to convert them from one representation to another when needed (for analysis). Gold
and Edwards (1992), and Ledoux and Gold (2006), among others, have also discussed
the use of the Voronoi diagram (in 2D and 3D) as an interesting alternative to raster-
based approaches. In a proposition that is similar to the one in this paper (at least
conceptually), Haklay (2004) proposes, in an attempt to model and manipulate 2D
fields, to store only the samples collected, and the parameters of interpolation functions.

FieldGML is also conceptually very similar to the concept of virtual data set (VDS)
(Stephan et al., 1993; Včkovski and Bucher, 1996; Včkovski, 1998). A VDS is a dataset
“enhanced” with a set of methods that are used to access, manipulate or transform
the data—it is an object in the object-oriented sense of the term. The term “vir-
tual” means that different representations of a dataset can be generated for different
users/applications. In the context of fields, that means that the samples of a field are
stored, and also that interpolation methods to generate different representations of that
field are available (pixel size, format, data model, etc.). It is implemented as a Java class
where an interface is defined.

VDSs were introduced around 15 years ago as a solution to the interoperability of GISs
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and to improve the quality of datasets used in GIS. The whole concept of interoperability
through VDS was based on the idea that “data exchange is not specified by a standard-
ised data structure (e.g. a physical file format) but a set of interfaces” (Včkovski, 1998,
p.54). If we fast-forward to 2008, we now have widely-accepted GIS-related standards
(see Section 3) and even a de facto language (GML). These standards have taken a dif-
ferent approach to interoperability since all datasets are coded with the same language,
which clearly contrasts with VDS where one could store the datasets in his own format
as long as he/she implemented the interface. FieldGML can thus be seen as implemen-
tation of the conceptual ideas of VDS in a 2008 context where GML is synonymous with
interoperability in the GIS world.
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6 FieldGML: The Field Geography Markup
Language

The previous chapters have highlighted that while the current abstract standards for
coverages do avoid the distinction between raster and vector, the two types created
(discrete and continuous coverages) are problematic because the distinction between
them is rather blurred and subtle, and no implementation exist for the latter type. The
current standards contributes to the confusion that already exists among users about
fields.

Because of these shortcomings and weaknesses, I propose an alternative to represent
fields: FieldGML. It is an XML-based language based on GML, and it permits us to
represent fields in 2D and 3D, although conceptually it can be easily extended to higher
dimensions. Unlike current standards where there is a distinction between discrete and
continuous fields/coverages, I argue in this paper that a field should always have one—
and only one!—value for a given attribute at every location in the spatial domain (be this
domain the surface of the Earth, a 3D volume, or even a 4D spatio-temporal hypercube).
The concept of discrete coverage can be then removed, as it is misleading and confusing.

6.1 A Field = Samples + Interpolation Rules

The principal idea behind FieldGML is that two things are needed to have a coverage:

1. a set of samples of the phenomenon;

2. an interpolation function to reconstruct the continuity of the phenomenon studied.

Samples. By that it is meant what is referred to as ‘discrete coverage’ in ISO/OGC
terms. It is any data that were collected to study the phenomenon:

1. a set of scattered points in 2D or 3D.

2. a set of lines, e.g. contour lines coming from a topographic map.

3. a set of scattered polygons to which one value is attached. Although this case
is possible, I am not aware of any interpolation method that would take a set of
polygons as input. It is nevertheless always possible to discretise each polygon into
a set of points. Polyhedra in 3D are also considered samples.

4. a raster image coming from remote sensing or photogrammetry where the value of
each pixel represents the temperature of the sea for instance.
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<<Type>>

Samples

+attribute: Attribute[1..*]

+dimension: integer

+TimeStamp : DateTime[0..1]

<<Type>>

Field

+attributes: Attribute[1..*]

+estimate(p:DirectPosition): value

<<MetaClass>>

GF_FeatureType

1 0..*
<<Type>>

I n te rpo la t ionMethod
10..*

<<instantiates>>

<<type>>

At t r ibu te

+name: string

+scale: ScaleType

+description: sting

<<CodeList>>

ScaleType

+continuous

+discrete

Figure 6.1: Overview of FieldGML classes.

Observe that a set of samples is simply a “normal” vector file or a grid (as defined in
other ISO/OGC standards, e.g. in ISO (2003)), where each object is assigned a value
for a common attribute.

Interpolation Method. The set of rules used to reconstruct the field from samples can
take many forms. Interpolation methods are rather difficult to categorise because they
are based on different paradigms, and some methods fall into more than one category.
No attempts will be made here to introduce categories (see Mitas and Mitasova (1999)
and Watson (1992) for that), but what should be kept in mind is that although several
different interpolation methods are used in GIS and that several publications advocate
the use of “better” methods, the current standards, while discussing a few methods,
give no importance to interpolation and do not permit the use of many of the known
methods.

Storing explicitly the interpolation method, as FieldGML is doing, is efficient in prac-
tice as only a few parameters have to be stored. Finding the appropriate values for
interpolation parameters is a difficult and time-consuming task, as the user must have a
good understanding of the spatial distribution of the objects in the set of samples, and of
the details of the method. A vivid example is Kriging (Oliver and Webster, 1990), with
which experienced users can obtain very good results, but which also leaves newcomers
clueless with its many parameters and options. Using Kriging with the appropriate pa-
rameters leads to a result that has statistically minimum variance, however, simply using
the default values for the parameters will most likely lead to unreliable results. Thus,
if we leave the job of modelling the datasets and deriving the interpolation parameters
to specialists, the users would not have to worry about these anymore. This is one of
FieldGML’s main benefits.

6.2 Abstract Specifications

Figure 6.1 shows an overview of the classes of FieldGML. The first thing to notice is that
the FieldGML type Field instantiates metaclass GF FeatureType (of ISO19109 (ISO,
2005a)), which means a field is a feature. A field contains one set of samples (Sample
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<<Type>>

Scat teredPoints
<<Type>>

Scat teredLines

<<Type>>

Array

<<Type>>

GridFile
<<<<Type>>>>

GridCoverage

+fileName

<<Type>>

Tessellation

<<Type>>

TessPointsRule

+points: ScatteredPoints

+rule: TessRule

<<Type>>

TessPointsConstraintsRule

+points: ScatteredPoints

+rule: TessRule

+constraints: LineSegments[1..*]

<<Type>>

Samples

+attribute: float or string[1..*]

+dimension: integer

+TimeStamp : DateTime[0..1]

<<CodeList>>

TessRule

+Delaunay

+Voronoi

+...

<<type>>

FullTessPointValue

+polygons/polyhedra

+points: ScatteredPoints

<<type>>

FullTessCellValue

+ScatteredPolygons/ScatteredPolyhedra

Figure 6.2: The Sample type.

type) and one interpolation method (of type InterpolationMethod. A field can model
more than one attribute, and the value assigned is of type Attribute. A field contains
one major operation, estimate, which takes as input a DirectPosition (a location in 2D
or 3D, depending on the field) and an attribute, and outputs the value of the modelled
attribute. This value is obtained by spatial interpolation, using the InterpolationMethod
class.

6.2.1 Samples

The Samples type, as shown in Figure 6.2 is the parent class for many different kinds of
samples that can be collected to study a field. It contains three attributes:

� attribute: that contains the name of the attribute, the scale of measurement
(either continuous or discrete) and a description.

� dimension: that can be either “2” or “3”, or theoretically a higher value.

� TimeStamp: as explained below, it is possible to time-stamp a collected dataset.
A field can therefore be a dynamic field.

The sub-classes of Samples are the following:

� ScatteredPoints: contains a set of points, regularly or irregularly distributed in
space. The dimension of each point can be either 2D or 3D.
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� ScatteredLines: contains a set of lines, regularly or irregularly distributed in
space. The dimension of each point can be either 2D or 3D, but in practice that
will most likely be 2D and the lines iso-contours.

� Tesselation: A tessellation is a partition of the space by a set of disjoint elements,
such that there are no empty parts (the union of all the elements completely fills
the space). The elements can be 2D (triangles or polygons), or 3D (tetrahedra or
polyhedra).

� Array: As is the case for GeoSciML (Woolf and Lowe, 2007), it was decided
that ‘legacy files’ (i.e. raster formats used in commercial GISs) could be used
directly without having to convert them to GML types (which are non-efficient
and cumbersome to use in practice). It is however still possible to use CV Grid as
defined in ISO/OGC standards and implemented in GML (as a discrete coverage).
Legacy files are simply referenced to by a pointer; the metadata about the file
(georeferencing, pixel size, etc.) have however to be stored in the FieldGML file
with GML types and/or attributes.

Types of tessellations. The Tessellation type is further divided into four sub-classes:

� TessPointsRule: That class contains a ScatteredPoints, plus the rule to be used
to construct the tessellation. The idea is not to store explicitly all the elements
of the tessellation, and reconstruct them on-the-fly when needed. The two best
examples are the Delaunay triangle and the Voronoi diagram of a set of points,
but any other tessellation could be used, as long as it can be created automatically
(one can think of the different generalisations of Voronoi diagrams).

� TessPointsConstraintsRule: When creating a tessellation, it is also possible to
consider constraints, which are usually line segments (in 2D, but polygonal faces
in 3D are also possible). The most common example is the Constrained Delaunay
triangulation, see Seidel (1988) for more info.

� FullTessCellValue: This is a tessellation formed by a set of polygons or polyhe-
dra, where each element has a value. In 2D, that is choropleth map for instance.
The types ScatteredPolygons and ScatteredPolyhedra, could be used, as long as
they form a valid tessellation. This type will in practice mostly used for discrete
fields.

� FullTessPointValue: This type exist because in a tessellation, the value is not
always attached to the elements of higher dimensionality. There can be tessellation
where the values are attached to the points forming the element. One example is
a TIN, where each triangle does not have one value since these are attached to the
points. The type FullTessPointValue exists mostly because not all triangulation
can be automatically reconstructed, for instance if it was manually constructed.
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Scale of measurement. The scale of measurement for a field is important because the
mathematical operations possible on a field will be different when different scales are
used. For instance, a field whose samples have an attribute with a discrete scale cannot
be reconstructed with most of the interpolation methods. If the values are attached to
points, then only NearestNeighbour should be used, and if they are attached to a polygon
for instance, then a constant function inside each polygon should be used. Also, while
many arithmetic operations (addition, subtraction, multiplication, etc.) are possible on
continuous fields, they are meaningless for discrete fields.

Dynamic field. In the ISO/OGC documents, there is no meaningful discussion con-
cerning the temporal aspect, i.e. how dynamic fields should be modelled. It is unclear
at this moment whether time should be treated as another dimension or whether it
should be treated separately; these two cases are respectively called “integrated” and
“hybrid” cases (Galton, 2004; Raper, 2000). A full integration would mean that space
and time exhibit the same characteristics, and that spatio-temporal hyper-objects are
created in the database. That would also mean that interpolation is performed in for
example 4D in the case of datasets referenced in 3D space. Such interpolation methods
are technically possible, but finding a distance function that is valid both in space and
time is tricky, and very much application-related (Zhang and Hunter, 2000). As for the
hybrid case, it means that space and time and treated separately, so that for instance
interpolation for temporal data is always performed in space, and then in time. Assume
we have different datasets collected at different times t0h, t5h and t8h. To know what
the situation was at t = 2h, one would therefore use interpolation in space at t = 0h
and at t = 5h, and then interpolate in time between the two values obtained. FieldGML
permits users to time-stamp either a Samples class (so that all the samples in it have
the same time stamp), or to time-stamp each elements of a dataset. That way, the user
can decide which interpolation method and how to implement it (integrated or hybrid
model).

6.2.2 InterpolationMethod

Interpolation methods play an important role in the FieldGML model, and several meth-
ods used in the GIS world have been listed. The list of methods in Figure 6.3 is by no
means exhaustive as other ones can be easily be added if needed (which is a big advan-
tage over current standards). It should also be noticed that all the methods listed are
perfectly valid in 2D and 3D.

A few examples of the methods commonly used in GIS:

Piecewise: a function is defined over each cell of a tessellation. The function within each
element is usually a simple mathematical function, and as Goodchild (1992) points
out, this function can be constant, linear, or of a higher order. A constant function
means that the value of the attribute is constant within one region, for example
to represent a discrete field, as in a choropleth map. An example of the use of
a linear function is a TIN: the spatial variation within each region (a triangle) is
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<<type>>

Bil inear

<<Type>>

Neares tNe ighbour

<<Type>>

I n te rpo la t ionMethod

<<Type>>

Kriging

+semiVarioFunction: string

+params: SearchParameters

<<Type>>

SearchParameters

+radius: float[0..*]

+minNeighbours: integer[0..*]

+maxNeighbours: integer[0..*]

+minNeighPerQuadrant: integer[0..*]

<<Type>>

I D W

+power: integer

+params: SearchParameters

<<Type>>

RST

+tension: double

+smoothingParam: double

+maxPtsSegment: integer

<<Type>>

Piecewise

+type: string

allowed methods are constant, 

linear, polynomial, etc...

<<type>>

Grid Interpolat ion
<<type>>

MathFunct ion

+function: string

<<type>>

Tri l inear

Figure 6.3: The InterpolationMethod type.

described by the linear function (a plane) defined by the three vertices lifted to
their respective elevation. The value of the attribute of a field at an unsampled
location x is thus obtained by linearly interpolating on the plane passing through
the three vertices of the triangle containing x. Akima (1978) shows the advantages
of using higher order functions in each region of a TIN—the main one being that
the slope of the terrain is continuous everywhere, i.e. there are no discontinuities
at the border of two triangles. The same functions can obviously be used within
each element in three dimensions.

IDW: as described in Shepard (1968), it requires different parameters to define which
points are involved in the interpolation at a given location (different criteria can
be used), and also the power must be defined.

Kriging: while the modelling of a dataset is a difficult and time-consuming task, the
output of the modelling (a function characterising the dependence between the
attributes of any two samples that are at a given distance from each other) can
be simply stored as a string. The parameters and the functions as defined in the
program gstat (Pebesma and Wesseling, 1998) are used.

Natural neighbour: the basic method (Sibson, 1981) does not need any user-defined pa-
rameters, but it is possible to obtain a smoother interpolation if certain parameters
are used (see Watson (1992)).

RST—regularized spline with tension: this method is available in the open-source GIS
GRASS, and by storing a few parameters a field can be reconstructed from a set
of samples (Mitasova and Mitas, 1993).

Grid interpolation: while a grid can be seen as a special case of scattered points, dif-
ferent methods optimised for grids have been developed, for instance bilinear and
biquadratic. See Kidner et al. (1999) for a discussion in 2D, but these methods
trivially generalise to higher dimensions.
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6.3 Implementation Specifications

The abstract specifications were implemented as an GML application schema. The ap-
plication schema is not fully described here since the classes of the abstract specifications
all become straightforwardly XML types. The schema, fieldgml.xsd, can be obtained
and browsed on the website of FieldGML1.

What follows is an overview of the important engineering decisions that were taken
in order to develop FieldGML and its schema. I tried to use GML types as much as
possible, but for practical reasons (e.g. simplicity of implementation and performances for
processing files) several new types also had to be created. An important decision that was
taken was not to use directly the GML implementation of CV DiscreteCoverage (called
gml:DiscreteCoverage) for the set of samples, for the reasons described previously.

Field type. A Field is a GML feature (of the type gml:AbstractFeatureType, which
means that it can use all the mechanisms already defined by the OGC to deal with
metadata.

<xs:element name="Field" type="FieldType"/>
<xs:complexType name="FieldType">
<xs:complexContent>
<xs:extension base="gml:AbstractFeatureType">
<xs:sequence>
<xs:element name="Samples" type="SamplesType"/>
<xs:element type="InterpolationMethodType" name="InterpolationMethod"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

Samples type. It inherits, and all his children, from gml:AbstractGeometryType,
which means that mechanisms defined by GML for reference systems can be used.

<xs:complexType name="SamplesType">
<xs:complexContent>
<xs:extension base="gml:AbstractGeometryType">
<xs:sequence>
<xs:element name="Attribute" type="AttributeType" minOccurs="1"
maxOccurs="unbounded"/>

<xs:element ref="gml:TimeInstant" maxOccurs="1" minOccurs="0"/>
<xs:choice>
<xs:element ref="ScatteredPoints"/>
<xs:element ref="ScatteredLines"/>
<xs:element type="ArrayType" name="Array"/>
<xs:element name="Tessellation" type="TessellationType"/>
</xs:choice>

</xs:sequence>

1www.gdmc.nl/ledoux/fieldgml.html
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<xs:attribute name="dimension" type="NumDimensionType" use="required"/>
</xs:extension>
</xs:complexContent>

</xs:complexType>

CV GeometryPairValue. The sub-types of Samples were all extended so that an at-
tribute (Attribute type) is attached to each object. A version of the CV GeometryPairValue
was implemented, as in Cox (2007). For instance, for the ScatteredPoints, PointValue
was also created, it is an extension of gml:PointType

<xs:complexType name="AttributeType">
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Scale" type="AttributeScaleType"/>
<xs:element name="Description" type="xs:string" minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<xs:element name="PointValue" type="PointValueType" substitutionGroup="gml:Point"/>
<xs:complexType name="PointValueType">
<xs:complexContent>
<xs:extension base="gml:PointType">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="value" type="xs:anyType"/>
<xs:element ref="gml:TimeInstant" maxOccurs="1" minOccurs="0"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:element name="ScatteredPoints" type="ScatteredPointsType"
substitutionGroup="gml:_GeometricAggregate"/>

<xs:complexType name="ScatteredPointsType">
<xs:complexContent>
<xs:extension base="gml:AbstractGeometricAggregateType">
<xs:sequence>
<xs:element ref="PointValue" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

Time stamping. To time-stamp elements, the gml:TimeInstant type was used.

TessPointsRule. It should be noticed here that if a tessellation is needed for the inter-
polation (e.g. Delaunay triangulation for a piecewise interpolation) this structure need
not be persistent: only the samples can be stored, and it is calculated on the fly by the
programme handling FieldGML files (see Chapter 7.
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<xs:simpleType name="TessRuleType">
<xs:restriction base="xs:string">
<xs:enumeration value="Delaunay"/>
<xs:enumeration value="Voronoi"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="TessPointsRuleType">
<xs:sequence>
<xs:element ref="ScatteredPoints"/>
<xs:element type="TessRuleType" name="TessRule"/>
</xs:sequence>

</xs:complexType>

FullTessCellValue. This type is simply a composite of PolygonValue, which is a poly-
gon with a value attached to it. The types gml:_Surface were not used, because it
would have required the creation of several new types. Here, the user is responsible for
insuring that the polygons (or polyhedra in 3D) form a valid tessellation.

<xs:element name="FullTessPolygonValue" type="CompositePolygonValueType"
substitutionGroup="gml:_GeometricAggregate"/>

<xs:complexType name="CompositePolygonValueType">
<xs:complexContent>
<xs:extension base="gml:AbstractGeometricAggregateType">
<xs:sequence>
<xs:element ref="PolygonValue" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

FullTessPointsValue. The solution retained is rather simplistic, but representing this
concept with the existing GML types would require a lot of efforts. The reason is that
when polygons or solids are involved, gml:Point types are not used, only gml:posList,
which would be cumbersome to extend with an Attribute value (a gml:Polygon can
easily be extended with an Attribute value, but we want here to have values attached to
the points). Therefore, two elements must be present (for the 2D case): (i) a “normal”
gml:CompositeSurface; and (ii) a ScatteredPoints (which contains all the points of
the surface, with the Attribute values). This solution has the side benefit that ev-
ery value for a point will be stored only once, and not once for each polygon (since
gml:CompositeSurface is not “topologic”).

<xs:complexType name="FullTessPointValue2DType">
<xs:sequence>
<xs:element ref="gml:CompositeSurface"/>
<xs:element ref="ScatteredPoints" maxOccurs="1" minOccurs="0"/>
</xs:sequence>

</xs:complexType>
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Interpolation methods. Storing the interpolation methods is very simple, some meth-
ods do not even require any parameters (for instance nearest neighbour interpolation (Sib-
son, 1981).

<xs:complexType name="InterpolationMethodType">
<xs:choice>
<xs:element name="Kriging" type="KrigingType"/>
<xs:element name="NearestNeighbour" type="NearestNeighbourType"/>
<xs:element name="IDW" type="IDWType"/>
<xs:element name="NaturalNeighbour" type="NaturalNeighbourType"/>
<xs:element name="RST" type="RSTType"/>
<xs:element name="Piecewise" type="PiecewiseType"/>
<xs:element name="MathFunction" type="xs:string"/>
<xs:element name="Bilinear" type="BilinearType"/>
<xs:element name="Trilinear" type="TrilinearType"/>
</xs:choice>

</xs:complexType>

<xs:complexType name="IDWType">
<xs:sequence>
<xs:element name="Power" type="xs:positiveInteger"/>
<xs:element name="SearchParam" type="SearchParamType"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="SearchParamType">
<xs:sequence>
<xs:element name="Radius" type="xs:double" maxOccurs="1" minOccurs="0"/>
<xs:element name="MinNeighbours" type="xs:positiveInteger" maxOccurs="1"
minOccurs="0"/>

<xs:element name="MaxNeighbours" maxOccurs="1" minOccurs="0"
type="xs:positiveInteger"/>

<xs:element name="MinNeighboursQuadrant" type="xs:positiveInteger"
maxOccurs="1" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

6.4 Summary

It should be highlighted here that if fields are represented with FieldGML, any kind of
fields can be defined, and special cases used by ISO/OGC all fall into one category (so
there are no needs to define explicitly subtypes). For example:

� the CV TINCoverage is based on a set of points, and the interpolation is a piecewise
function (linear function inside each Delaunay triangle).

� the CV ThiessenPolygonCoverage type is obtained with the set of scattered point
that was used to create the Voronoi/Thiessen polygons, and the interpolation
method is natural neighbour; notice that if a constant function is assigned to each
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polygon, then we obtain the same results as if the nearest neighbour interpolation
was used.

� the CV DiscreteGridPointCoverage type is obtained with a GridFile for instance.
Observe here that even if a grid is the set of samples for a field, an interpolation
method must be also defined (it can be for instance constant or bilinear inside each
cell).
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7 Prototype and Examples of FieldGML
files

To convert back and forth between the FieldGML representation and the formats used
in GIS and geoscience applications (mostly grids), a prototype was built. The proto-
type was developed with the Python programming language, and uses only open-source
software.

Currently it permits users to read a FieldGML file and output to different formats, and
it is also possible to create a FieldGML file when a set of samples is already available. To
output to a format used by commercial GISs, the user has to choose the resolution of the
grids (only grids are possible right now, although triangulation could be implemented in
the future), and the format. The possible grid formats currently supported are the ones
in the GDAL library1 (in 2D), and netCDF (in 3D).

Some of the interpolation methods described in the precedent section were imple-
mented or their libraries were linked to the prototype. For instance, the program
gstat (Pebesma and Wesseling, 1998) was used for Kriging, and CGAL2 to create trian-
gulations in 2D and 3D, used for some of the interpolation methods.

7.1 FieldGML files

The Appendix A contains some excerpts from FieldGML files. The complete files can
be found on the FieldGML website.

7.2 fgmlinfo: to get information about a FieldGML file

This simple script gives information about a FieldGML file. Its use is simple:

$ python fgmlinfo 5.xml

and the user gets an overview of the content of a the file 5.xml.

7.3 fgml2grid: to convert a FieldGML file to a grid

With this script, one can convert a FieldGML file to a grid, either in 2D or 3D. Right
now, only GeoTiff, HFA and netCDF formats are supported. The user must specify

1The Geospatial Data Abstraction Library: www.gdal.org
2The computational geometry algorithms library: www.cgal.org
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the format, and the pixel resolution (these have to be the same in all dimensions). For
instance, for a give file hill.xml

$ python fgml2grid.py hill.xml elevation GTiff 5

would create a GeoTiff file (the bounding box of the dataset is used), with a 5 unit size
for every pixel. The parameter “elevation” is used since we want to use this attribute
(a FieldGML file can store more than one attribute at the same time).

7.4 file2fgml: to convert a dataset to a FieldGML file

This Python script permits us to convert scattered points (in 2D and 3D), and lines
in 2D to a FieldGML file. The original datasets can be either in ASCII format, or
in an ESRI’s shapefile (for the 2D datasets). For instance, to convert a set of points
representing elevation, for instance an ASCII file 5.txt

$ python file2fgml.py 5.txt elevation

The user can then open the XML file and fill out the details for the interpolation method.

7.5 Discussion Over the Implementation

At this moment, some of the interpolation methods have been implemented in the pro-
totype as a proof of concept, but to favour interoperability, a better option would be
having a webserver where these functions are available. The newly adopted OGC stan-
dards about web processing service (WPS) (OGC, 2007c), which defines how GIS oper-
ations can be performed over the Internet could be used for instance. The interpolation
methods used by FieldGML would simply be available on a server, and a user would
upload his FieldGML file, specify what representation is needed, and then he/she would
get the file.

Also, it is interesting to observe that while FieldGML and VDS (as described in
Section 5 have very similar conceptual ideas, the implementations are totally different
because of the way interoperability is tackled. The VDS approach was about having
proprietary formats not directly accessible to users, who had to access data through
common interfaces. While theoretically very sound, this was not the choice the GIS
community picked, and now instead we have one language (GML) that can be used to
represent any geographical dataset. While probably less efficient (GML is very verbose
and complex), it offers more flexibility as anyone can read a FieldGML file and extract
the original samples, while in the case of VDS you would have to have a piece of software
implementing the interface. With the original dataset, the user can then choose another
interpolation method, if needed.
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8 Conclusions

The ultimate goal of a digital field representation is to reconstruct in a computer the
continuity of a studied phenomenon, i.e. to be able to accurately estimate, or calculate,
the value of the phenomenon at any location in a spatial domain. To do so, the current
ISO/OGC standards offer two abstract types: the discrete and the continuous coverages.
The main problems with these are:

� The former does not permit us to represent fields, as any GIS datasets to which
an attribute is attached fall in the discrete coverage category.

� The distinction between the two types are blurred and subtle, and that has created
confusion among users. As highlighted in this report, a field is somewhat difficult
to represent in a computer, so the related standards ought to be clear on definitions
and related concepts.

� Interpolation methods are barely discussed, and for many types only one method
is assumed to be used. This is too restrictive in practice, since different methods
are used in different disciplines.

� There are no known implementations of the continuous coverage type. This is
probably a direct consequence of the poor definitions.

FieldGML: the alternative. As an alternative to current standards for fields, FieldGML
has been proposed. With it, a field always contains two parts:

1. the set of samples that were collected to study the field;

2. the interpolation method—with values for all the parameters–that should be used
to reconstruct the field in a computer.

It has the following advantages:

� it respects the scientific definition of a field.

� it is simple from a theoretical point of view, and thus easy to understand for users.
A field is always something continuous; if you only have a dataset of scattered
points, this is not a field.

� it permits us to model every situation (and that in two and three dimensions).
Thus, no sub-types are necessary.

� it uses the types already defined in current implementation standards (i.e. GML).
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� it is extensible. Users can “plug” their own interpolation methods.

� more importantly, it is more adapted than raster structures to the kind of datasets
found in GIS-related applications, because it permits us to always keep the orig-
inal data that were collected to study a phenomenon, and simply generate new
representations that are adapted to a particular use and application.

� it is implementable. As a proof of concepts, a GML application schema was created,
and some FieldGML datasets created.

Finally, it should be said that while the use of FieldGML requires a rethinking from
people who produce fields, the users need not be affected. Indeed, a potential user of
FieldGML would simply obtain a field in the form of a FieldGML file, select the format
and resolution of the output file, and carry on with his/her work as before. But when
he/she would need to exchange the field with someone else, the shortcomings of raster
structures would not arise.

For more information about FieldGML:

http://www.gdmc.nl/ledoux/fieldgml.html
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A Examples of FieldGML files

A.1 Two-dimensional Points (ScatteredPoints)

This is an excerpt from a FieldGML file containing 5000 scattered points, representing
the elevation of a mountain. The interpolation method is natural neighbour method,
which does not require any user-defined parameters.

<?xml version="1.0" encoding="utf-8"?>
<Field xmlns="http://www.gdmc.nl/ledoux/fieldgml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.gdmc.nl/ledoux/fieldgml
http://www.gdmc.nl/ledoux/fieldgml/fieldgml.xsd">
<Samples dimension="2">
<Attribute>
<Name>elevation</Name>
<Scale>Continuous</Scale>

</Attribute>
<ScatteredPoints>
<PointValue>

<gml:pos>199.129206765 108.59756162</gml:pos>
<value>87.7276930119</value>
<gml:TimeInstant>
<gml:timePosition>2003-02-13</gml:timePosition>

</gml:TimeInstant>
</PointValue>
<PointValue>
<gml:pos>166.318409087 183.304411542</gml:pos>
<value>70.1089874139</value>

</PointValue>
<PointValue>
<gml:pos>190.09899811 248.528765249</gml:pos>
<value>43.2618775452</value>

</PointValue>
.
.
.

</Samples>
<InterpolationMethod>
<NaturalNeighbour/>

</InterpolationMethod>

37

Preliminary version—December 15, 2008



</Field>

A.2 Two-dimensional Points (TessPointsRule)

This is an excerpt from a FieldGML file containing 5000 scattered points, but they
are stored in a TessPointsRule of type “Delaunay”, which means that they have to be
tessellated. The interpolation method attached is piecewise linear. This dataset is thus
a standard TIN.

<?xml version="1.0" encoding="utf-8"?>
<Field xmlns="http://www.gdmc.nl/ledoux/fieldgml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.gdmc.nl/ledoux/fieldgml
http://www.gdmc.nl/ledoux/fieldgml/fieldgml.xsd">
<Samples dimension="2">
<Attribute>
<Name>elevation</Name>
<Scale>Continuous</Scale>

</Attribute>
<Tessellation>
<TessPointsRule>

<ScatteredPoints>
<PointValue>
<gml:pos>199.129206765 108.59756162</gml:pos>
<value>87.7276930119</value>

</PointValue>
<PointValue>
<gml:pos>166.318409087 183.304411542</gml:pos>
<value>70.1089874139</value>

</PointValue>
<PointValue>
<gml:pos>190.09899811 248.528765249</gml:pos>
<value>43.2618775452</value>

</PointValue>
.
.
.
<PointValue>
<gml:pos>189.548967103 72.1125642931</gml:pos>
<value>123.311568705</value>

</PointValue>
</ScatteredPoints>
<TessRule>Delaunay</TessRule>

</TessPointsRule>
</Tessellation>

</Samples>
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<InterpolationMethod>
<Piecewise>Linear</Piecewise>

</InterpolationMethod>
</Field>

A.3 Three-dimensional Points

This is an excerpt from a FieldGML file containing 150 scattered points in 3D, repre-
senting a geological body.

<?xml version="1.0" encoding="utf-8"?>
<Field xmlns="http://www.gdmc.nl/ledoux/fieldgml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.gdmc.nl/ledoux/fieldgml
http://www.gdmc.nl/ledoux/fieldgml/fieldgml.xsd">
<Samples dimension="3">

<Attribute>
<Name>concentration of a xxx chemical</Name>
<Scale>Continuous</Scale>

</Attribute>
<gml:TimeInstant>
<gml:timePosition>2003-02-13</gml:timePosition>

</gml:TimeInstant>
<ScatteredPoints>
<PointValue>

<gml:pos>0.13385 0.35097 0.50739</gml:pos>
<value>0.50739</value>

</PointValue>
<PointValue>
<gml:pos>0.13385 0.35097 0.61167</gml:pos>
<value>0.61167</value>

</PointValue>
<PointValue>
<gml:pos>0.13385 0.35097 0.73074</gml:pos>
<value>0.73074</value>

</PointValue>
.
.
.
<PointValue>
<gml:pos>0.13385 0.35097 0.83969</gml:pos>
<value>0.83969</value>

</PointValue>
</Samples>
<InterpolationMethod>
<NearestNeighbour/>

</InterpolationMethod>
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</Field>

A.4 Contours Lines

This is an excerpt from a FieldGML file containing 5000 scattered points, representing
the elevation of a mountain.

<?xml version="1.0" encoding="utf-8"?>
<Field xmlns="http://www.gdmc.nl/ledoux/fieldgml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.gdmc.nl/ledoux/fieldgml
file:/home/hugo/projects/standards/fieldgml/fieldgml.xsd">
<Samples dimension="2">
<Attribute>
<Name>elevation</Name>
<Scale>Continuous</Scale>

</Attribute>
<ScatteredLines>
<LineSegmentValue>

<gml:posList>110.990258621 119.169396552
108.26387931 119.169396552 104.174310345
117.654741379 102.508189655 115.231293103
101.599396552 113.110775862 102.356724138
110.990258621 102.508189655 108.566810345
103.568448276 106.749224138 105.234568966
104.477241379 106.900689655 102.659655172
110.081465517 99.9332758621 112.959310345
...

</gml:posList>
<value>150.0</value>

</LineSegmentValue>
<LineSegmentValue>
<gml:posList>94.0261206897 153.930732759 90.3909482759 ...
</gml:posList>
<value>140.0</value>

</LineSegmentValue>
.
.
.
<LineSegmentValue>
<gml:posList>42.5570933413 2.0839402497 46.6017449465
4.84165725327 50.094853151 5.02550505351 56.3456783591
5.02550505351 61.8611123662 4.10626605232 67.0088507729
2.45163585018

</gml:posList>
<value>70.0</value>

</LineSegmentValue>
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</ScatteredLines>
</Samples>
<InterpolationMethod>
<IDW>
<Power>2</Power>

<SearchParam>
<Radius>12</Radius>

</SearchParam>
</IDW>

</InterpolationMethod>
</Field>

A.5 Raster File in 2D

This is an excerpt from a FieldGML file representing a raster file (GeoTiff format). The
interpolation is piecewise constant, that is when interpolating the value of the pixel is
used.

<?xml version="1.0" encoding="utf-8"?>
<Field xmlns="http://www.gdmc.nl/ledoux/fieldgml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.gdmc.nl/ledoux/fieldgml
http://www.gdmc.nl/ledoux/fieldgml/fieldgml.xsd">

<Samples dimension="2">
<Attribute>

<Name>elevation</Name>
<Scale>Continuous</Scale>

</Attribute>
<Array>

<GridFile>
<gml:Grid dimension="2">

<gml:limits>
<gml:GridEnvelope>

<gml:low>0 0</gml:low>
<gml:high>125 125</gml:high>

</gml:GridEnvelope>
</gml:limits>
<gml:axisName>x y</gml:axisName>

</gml:Grid>
<fileName>/home/hugo/data/fieldgml/5.tif</fileName>

</GridFile>
</Array>

</Samples>
<InterpolationMethod>

<Piecewise>Constant<Piecewise/>
</InterpolationMethod>

</Field>

41

Preliminary version—December 15, 2008


	Introduction
	Fields and their Representation
	Definition of a Field
	Properties
	Representation in Computers
	Confusion between Objects and Fields

	Current Standards for Fields
	Abstract specifications
	Definition of Coverage
	Two Different Types of Coverages
	Special Coverage Subtypes
	Interpolation Functions
	Discrete Coverages with Lines and/or Polygons & Interpolation
	Three-dimensional Case

	Implementation Specifications

	Summary of Formats/Models Being Used in Practice
	The Dangers of Using Raster Formats

	Other Efforts to Represent Fields
	FieldGML: The Field Geography Markup Language
	A Field = Samples + Interpolation Rules
	Abstract Specifications
	Samples
	InterpolationMethod

	Implementation Specifications
	Summary

	Prototype and Examples of FieldGML files
	FieldGML files
	fgmlinfo: to get information about a FieldGML file
	fgml2grid: to convert a FieldGML file to a grid
	file2fgml: to convert a dataset to a FieldGML file
	Discussion Over the Implementation

	Conclusions
	Examples of FieldGML files
	Two-dimensional Points (ScatteredPoints)
	Two-dimensional Points (TessPointsRule)
	Three-dimensional Points
	Contours Lines
	Raster File in 2D


